1.一種基于完備循環(huán)差集的可快速編碼的type-II QC-LDPC碼構(gòu)造方法,其特征在于:針對低密度奇偶校驗(Quasi-Cyclic Low-Density Parity-parity check,QC-LDPC)碼編碼復(fù)雜度較高和碼字間最小距離不夠大而導(dǎo)致糾錯性能下降的問題,首先構(gòu)造一個準(zhǔn)雙對角線結(jié)構(gòu)的權(quán)重矩陣Awt來確定校驗矩陣中每個循環(huán)子矩陣的權(quán)重,Awt中包含0,1,2三種元素,其元素分布的位置確保了校驗矩陣H具有準(zhǔn)雙對角線的形式且滿秩;充分利用完備循環(huán)差集(Cyclic Difference Sets,CDS)的特殊性質(zhì),根據(jù)Awt中的權(quán)重分配,利用完備循環(huán)差集構(gòu)造移位矩陣S(H)確保H中不存在四環(huán),將S(H)用零矩陣、循環(huán)置換矩陣(Circulant Permutation Matrices,CPM)和權(quán)重為2的循環(huán)矩陣(Weight-2Circulant Matrices,W2CM)擴展得到校驗矩陣H,H的零空間就是這種非規(guī)則type-II QC-LDPC碼,最后根據(jù)H的結(jié)構(gòu)給出了該碼字的快速迭代編碼算法。
2.根據(jù)權(quán)利1要求所述基于完備循環(huán)差集的可快速編碼的type-II QC-LDPC碼構(gòu)造方法,其特征在于:構(gòu)造準(zhǔn)雙對角線結(jié)構(gòu)的權(quán)重矩陣Awt來確定校驗矩陣中每個循環(huán)子矩陣的權(quán)重,Awt中包含0,1,2三種元素,決定了校驗矩陣H中由零矩陣、CPM和W2CM組成。Awt中元素分布的位置確保了校驗矩陣H具有準(zhǔn)雙對角線的形式且滿秩。根據(jù)Awt中的權(quán)重分配,利用完備CDS構(gòu)造移位矩陣S(H)確保H中不存在四環(huán),從而保證譯碼的收斂性。
3.根據(jù)權(quán)利1或2要求所述基于完備循環(huán)差集的可快速編碼的type-II QC-LDPC碼構(gòu)造方法,其特征在于:構(gòu)造的type-II QC-LDPC碼的校驗矩陣可分為兩部分,即H=[H1H2],其中H1為信息子矩陣,H2為校驗子矩陣,H2是準(zhǔn)雙對角線結(jié)構(gòu)的形式,是實現(xiàn)快速編碼的基礎(chǔ)部分。根據(jù)編碼原理等式HcT=0,利用構(gòu)造的校驗矩陣H直接可求得碼字c,并給出了具體的快速編碼迭代編碼算法,通過過對該編碼算法的復(fù)雜度進行分析,得出編碼復(fù)雜度僅與碼長呈線性比例關(guān)系,有效地減低了編碼復(fù)雜度。